海南省院士工作站(数学)系列学术报告
2018年10月26日 19:29 来源:本站 点击: [打印] [收藏] [关闭]
报告一
题目:Uncertainty Relations for the Triple Components of Angular Momentum
报告人:陈斌 副教授(天津师范大学数学科学学院)
时间:11月2日上午9:00-10:00
摘要:The uncertainty principle is considered to be one of the most striking features in quantum mechanics. In the textbook literature, uncertainty relations usually refer to the preparation uncertainty which imposes a limitation on the spread of measurement outcomes for a pair of non-commuting observables. In this talk, we discuss the preparation uncertainty for the angular momentum, especially for spin-1/2. We derive uncertainty relations encompassing the triple components of angular momentum, and show that compared with the relations involving only two components, a triple constant 2/√3 often arises. Intriguingly, this constant is the same for the position and momentum case.
报告二
题目:Quantum entanglement and Bell inequalities
报告人:李明 副教授 (中国石油大学(华东))
时间:11月2日下午4:00-5:00
摘要:In this talk, I will start with a short introduction of Quantum non-locality and Bell inequalities. Then we consider the maximal violations of Bell inequalities, and its behavior under local filtering operations. We also investigate the genuine multipartite entanglement(GME), the detection and the lower bound of GME concurrence. At last we show that any high dimensional and multipartite entanglement can be described by violations of CHSH inequalities.
报告人简介:李明,男,1982年生,山东人,博士,副教授,硕士生导师。中国石油大学(华东)理学院应用数学系主任。目前主要致力于数学物理中量子信息与量子计算等方面的研究工作。近年来在《Physical Review Letters》、《Physical Review A》等著名期刊发表SCI论文40余篇,主持国家自然科学基金面上项目、省部级基金等课题10余项。2013年入选中国石油大学(华东)青年骨干教师计划。获山东省教育厅科研成果一等奖(1/3)、黄岛区自然科学二等奖(2/3);多次访问德国莱比锡马普应用数学所、中科院物理所、北京计算科学中心等;担任教育部学位论文评审专家、美国《Mathematical Review》评论员、Physical Review A,Scientific Reports, Euro Physics Letters,Quantum Information Processing,Chin. Phys. B, Chin. Sci. Bull.,Commu.Theor.Phys.等SCI学术期刊审稿人。
报告三
题目:Periodic Solution and Stationary Distribution of Stochastic Predator–Prey Models with Higher-Order Perturbation
报告人:蒋达清 教授 (中国石油大学(华东))
时间:11月2日下午5:00-6:00
摘要:In this paper, two stochastic predator–prey models with general functional response and higher-order perturbation are proposed and investigated. For the nonautonomous periodic case of the system, by using Khasminskii’s theory of periodic solution, we show that the system admits a nontrivial positive T -periodic solution. For the system disturbed by both white and telegraph noises, sufficient conditions for positive recurrence and the existence of an ergodic stationary distribution to the solutions are established. The existence of stationary distribution implies stochastic weak stability to some extent.
报告人简介:蒋达清,男,1965年生,湖南人,理学院应用数学系教授,博士生导师。主要研究随机微分方程表示的随机生物数学模型和传染病模型。2008年获全国百篇优秀博士论文,2010年获第五届“秦元勋数学奖”,2015年获教育部自然科学奖二等奖;主持高等学校全国优秀博士学位论文作者专项基金和多项国家自然科学基金等项目;发表SCI期刊论文150余篇。连续四年入选高被引科学家。担任美国《Mathematical Review》评论员、 长春市数学学会理事、《J. Math. Anal. Appl.》、《Nonlinear Analysis》、《J. Comput. Appl. Math.》、《数学学报》、《数学物理学报》、 《数学年刊》、《高校应用数学学报》、《吉大学报》、《东北数学》等杂志审稿人。
地点:数学楼三楼报告厅
主办单位:海南省院士工作站(数学)
欢迎广大师生积极参加!